Composite fermions
The fermions are of two types in which one of the type is composite fermions. Composite particles (such as hadrons, nuclei, and atoms) can be bosons or fermions depending on their constituents. More precisely, because of the relation between spin and statistics, a particle containing an odd number of fermions is itself a fermion: it will have half-integer spin.
Examples include the following:
- A baryon, such as the proton or neutron, contains three fermionic quarks and is therefore a fermion;
- The nucleus of a carbon-13 atom contains 6 protons and 7 neutrons and is therefore a fermion;
- The atom helium-3 (3He) is made of 2 protons, a neutron and 2 electrons and is therefore a fermion.
The number of bosons within a composite particle made up of simple particles bound with a potential has no effect on whether it is a boson or a fermion.
Fermionic or bosonic behavior of a composite particle (or system) is only seen at large (compared to size of the system) distances. At proximity, where spatial structure begins to be important, a composite particle (or system) behaves according to its constituent makeup.
Fermions can exhibit bosonic behavior when they become loosely bound in pairs. This is the origin of superconductivity and the superfluidity of helium-3: in superconducting materials, electrons interact through the exchange of phonons, forming Cooper pairs, while in helium-3, Cooper pairs are formed via spin fluctuations.
The quasiparticles of the fractional quantum Hall effect are also known as composite fermions, which are electrons with an even number of quantized vortices attached to them.
No comments:
Post a Comment