Saturday, 8 June 2013

History of Photoelectric effect 20th century

                     The discovery of the ionization of gases by ultra-violet light was made by Philipp Lenard in 1900. As the effect was produced across several centimeters of air and made very great positive and small negative ions, it was natural to interpret the phenomenon, as did J. J. Thomson, as a Hertz effect upon the solid or liquid particles present in the gas.
In 1902, Lenard observed that the energy of individual emitted electrons increased with the frequency (which is related to the color) of the light.
This appeared to be at odds with Maxwell's wave theory of light, which predicted that the electron energy would be proportional to the intensity of the radiation.
Lenard observed the variation in electron energy with light frequency using a powerful electric arc lamp which enabled him to investigate large changes in intensity, and that had sufficient power to enable him to investigate the variation of potential with light frequency. His experiment directly measured potentials, not electron kinetic energy: he found the electron energy by relating it to the maximum stopping potential (voltage) in a phototube. He found that the calculated maximum electron kinetic energy is determined by the frequency of the light. For example, an increase in frequency results in an increase in the maximum kinetic energy calculated for an electron upon liberation – ultraviolet radiation would require a higher applied stopping potential to stop current in a phototube than blue light. However Lenard's results were qualitative rather than quantitative because of the difficulty in performing the experiments: the experiments needed to be done on freshly cut metal so that the pure metal was observed, but it oxidised in a matter of minutes even in the partial vacuums he used. The current emitted by the surface was determined by the light's intensity, or brightness: doubling the intensity of the light doubled the number of electrons emitted from the surface.
The researches of Langevin and those of Eugene Bloch have shown that the greater part of the Lenard effect is certainly due to this 'Hertz effect'. The Lenard effect upon the gas itself nevertheless does exist. Refound by J. J. Thomson and then more decisively by Frederic Palmer, Jr., it was studied and showed very different characteristics than those at first attributed to it by Lenard.
In 1905, Albert Einstein solved this apparent paradox by describing light as composed of discrete quanta, now called photons, rather than continuous waves. Based upon Max Planck's theory of black-body radiation, Einstein theorized that the energy in each quantum of light was equal to the frequency multiplied by a constant, later called Planck's constant. A photon above a threshold frequency has the required energy to eject a single electron, creating the observed effect. This discovery led to the quantum revolution in physics and earned Einstein the Nobel Prize in Physics in 1921. By wave-particle duality the effect can be analyzed purely in terms of waves though not as conveniently.
Albert Einstein's mathematical description of how the photoelectric effect was caused by absorption of quanta of light was in one of his 1905 papers, named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light". This paper proposed the simple description of "light quanta", or photons, and showed how they explained such phenomena as the photoelectric effect. His simple explanation in terms of absorption of discrete quanta of light explained the features of the phenomenon and the characteristic frequency.
The idea of light quanta began with Max Planck's published law of black-body radiation ("On the Law of Distribution of Energy in the Normal Spectrum") by assuming that Hertzian oscillators could only exist at energies E proportional to the frequency f of the oscillator by E = hf, where his Planck's constant. By assuming that light actually consisted of discrete energy packets, Einstein wrote an equation for the photoelectric effect that agreed with experimental results. It explained why the energy of photoelectrons was dependent only on the frequency of the incident light and not on its intensity: a low-intensity, high-frequency source could supply a few high energy photons, whereas a high-intensity, low-frequency source would supply no photons of sufficient individual energy to dislodge any electrons. This was an enormous theoretical leap, but the concept was strongly resisted at first because it contradicted the wave theory of light that followed naturally from James Clerk Maxwell's equations for electromagnetic behavior, and more generally, the assumption of infinite divisibility of energy in physical systems. Even after experiments showed that Einstein's equations for the photoelectric effect were accurate, resistance to the idea of photons continued, since it appeared to contradict Maxwell's equations, which were well-understood and verified.
Einstein's work predicted that the energy of individual ejected electrons increases linearly with the frequency of the light. Perhaps surprisingly, the precise relationship had not at that time been tested. By 1905 it was known that the energy of photoelectrons increases with increasing frequency of incident light and is independent of the intensity of the light. However, the manner of the increase was not experimentally determined until 1914 when Robert Andrews Millikan showed that Einstein's prediction was correct.
The photoelectric effect helped to propel the then-emerging concept of wave–particle duality in the nature of light. Light simultaneously possesses the characteristics of both waves and particles, each being manifested according to the circumstances. The effect was impossible to understand in terms of the classical wave description of light, as the energy of the emitted electrons did not depend on the intensity of the incident radiation. Classical theory predicted that the electrons would 'gather up' energy over a period of time, and then be emitted

No comments:

Post a Comment