Sunday, 9 June 2013

Quantum field operators

                         Defining {a^{(\dagger)}}_{\nu} as a general annihilation(creation) operator that could be either fermionic ({c^{(\dagger)}}_{\nu}) or bosonic ({b^{(\dagger)}}_{\nu}), the real space representation of the operators defines the quantum field operators  \Psi(\bold{r}) and \Psi^{\dagger}(\bold{r}) by
 \Psi(\bold{r})=\sum_{\nu} \psi_{\nu} \left( \bold{r} \right) a_{\nu}
 \Psi^{\dagger}(\bold{r})=\sum_{\nu} {\psi^*}_{\nu} \left( \bold{r} \right) {a^{\dagger}}_{\nu}
Second quantization operators, while the coefficients \psi_{\nu} \left( \bold{r} \right) and  {\psi^*}_{\nu} \left( \bold{r} \right) are the ordinary first quantization wavefunctions. Loosely speaking, \Psi^{\dagger}(\bold{r}) is the sum of all possible ways to add a particle to the system at position r through any of the basis states \psi_{\nu}\left(\bold{r}\right). Since  \Psi(\bold{r}) and \Psi^{\dagger}(\bold{r}) are second quantization operators defined in every point in space they are called quantum field operators. They obey the following fundamental commutator and anti-commutator,
\begin{align} 
 \left[\Psi(\bold{r}_1),\Psi^\dagger(\bold{r}_2)\right]=\delta (\bold{r}_1-\bold{r}_2) &\text{     boson fields,}\\
\{\Psi(\bold{r}_1),\Psi^\dagger(\bold{r}_2)\}=\delta (\bold{r}_1-\bold{r}_2)&\text{     fermion fields.}
\end{align}
In homogeneous systems it is often desirable to transform between real space and the momentum representations, hence, the quantum fields operators in Fourier basis yields:
 \Psi(\bold{r})={1\over \sqrt {V}} \sum_{\bold{k}} e^{i\bold{k\cdot r}}a_{\bold{k}}
 \Psi^{\dagger}(\bold{r})={ 1\over \sqrt{V}} \sum_{\bold{k}} e^{-i\bold{k\cdot r}}{a^{\dagger}}_{\bold{k}}

No comments:

Post a Comment