Sunday, 9 June 2013

Stimulated and spontaneous emission

                         In 1916, Einstein showed that Planck's radiation law could be derived from a semi-classical, statistical treatment of photons and atoms, which implies a relation between the rates at which atoms emit and absorb photons. The condition follows from the assumption that light is emitted and absorbed by atoms independently, and that the thermal equilibrium is preserved by interaction with atoms. Consider a cavity in thermal equilibrium and filled with electromagnetic radiation and atoms that can emit and absorb that radiation. Thermal equilibrium requires that the energy density \rho(\nu) of photons with frequency \nu (which is proportional to their number density) is, on average, constant in time; hence, the rate at which photons of any particular frequency are emitted must equal the rate of absorbing them. 
Einstein began by postulating simple proportionality relations for the different reaction rates involved. In his model, the rate R_{ji} for a system to absorb a photon of frequency \nu and transition from a lower energy E_{j} to a higher energy E_{i} is proportional to the number N_{j} of atoms with energy E_{j} and to the energy density \rho(\nu) of ambient photons with that frequency,

R_{ji}=N_{j} B_{ji} \rho(\nu) \!
where B_{ji} is the rate constant for absorption. For the reverse process, there are two possibilities: spontaneous emission of a photon, and a return to the lower-energy state that is initiated by the interaction with a passing photon. Following Einstein's approach, the corresponding rate R_{ij} for the emission of photons of frequency \nu and transition from a higher energy E_{i} to a lower energy E_{j} is

R_{ij}=N_{i} A_{ij} + N_{i} B_{ij} \rho(\nu) \!
where A_{ij} is the rate constant for emitting a photon spontaneously, and B_{ij} is the rate constant for emitting it in response to ambient photons (induced or stimulated emission). In thermodynamic equilibrium, the number of atoms in state i and that of atoms in state j must, on average, be constant; hence, the rates R_{ji} and R_{ij} must be equal. Also, by arguments analogous to the derivation of Boltzmann statistics, the ratio of N_{i} and N_{j} is g_i/g_j\exp{(E_j-E_i)/kT)}, where g_{i,j} are the degeneracy of the state i and that of j, respectively, E_{i,j} their energies, k the Boltzmann constant and T the system's temperature. From this, it is readily derived that g_iB_{ij}=g_jB_{ji} and

A_{ij}=\frac{8 \pi h \nu^{3}}{c^{3}} B_{ij}.
The A and Bs are collectively known as the Einstein coefficients. 
Einstein could not fully justify his rate equations, but claimed that it should be possible to calculate the coefficients A_{ij}B_{ji} and B_{ij}once physicists had obtained "mechanics and electrodynamics modified to accommodate the quantum hypothesis".  In fact, in 1926,Paul Dirac derived the B_{ij} rate constants in using a semiclassical approach,  and, in 1927, succeeded in deriving all the rate constants from first principles within the framework of quantum theory.  Dirac's work was the foundation of quantum electrodynamics, i.e., the quantization of the electromagnetic field itself. Dirac's approach is also called second quantization or quantum field theory;  earlier quantum mechanical treatments only treat material particles as quantum mechanical, not the electromagnetic field.
Einstein was troubled by the fact that his theory seemed incomplete, since it did not determine the direction of a spontaneously emitted photon. A probabilistic nature of light-particle motion was first considered by Newton in his treatment of birefringence and, more generally, of the splitting of light beams at interfaces into a transmitted beam and a reflected beam. Newton hypothesized that hidden variables in the light particle determined which path it would follow.  Similarly, Einstein hoped for a more complete theory that would leave nothing to chance, beginning his separation  from quantum mechanics. Ironically, Max Born's probabilistic interpretation of the wave function  was inspired by Einstein's later work searching for a more complete theory.

No comments:

Post a Comment