Sunday, 9 June 2013

Bosons in Second qantizations


                       Given the occupation number, we introduce the annihilation b_{\nu_j} and creation {b^{\dagger}}_{\nu_j} operators that lowers(raises) the occupation number in the state | \nu_j \rang by 1,
b_{\nu_j}|\dots,n_{\nu_{j-1}}, n_{\nu_j}, n_{\nu_{j+1}},\dots \rang=\sqrt{n_{\nu_j}}|\dots,n_{\nu_{j-1}}, n_{\nu_j}-1, n_{\nu_{j+1}},\dots \rang
{b^{\dagger}}_{\nu_j}|\dots,n_{\nu_{j-1}}, n_{\nu_j}, n_{\nu_{j+1}},\dots \rang=\sqrt{n_{\nu_j}+1}|\dots,n_{\nu_{j-1}}, n_{\nu_j}+1, n_{\nu_{j+1}},\dots \rang
Since bosons are symmetric in the single-particle state index \nu_j we demand that b_{\nu_j} and {b^{\dagger}}_{\nu_j} commute, So, we can obtain the mean properties of these operators:
\begin{matrix}
  [{b^{\dagger}}_{\nu_j},{b^{\dagger}}_{\nu_k}] = 0  & [b_{\nu_j},b_{\nu_k}]=0 & [b_{\nu_j},{b^{\dagger}}_{\nu_k}]=\delta_{\nu_j\nu_k}\\
 {b^{\dagger}}_{\nu_j}|n_{\nu_j}\rang=\sqrt{n_{\nu_j}+1}|n_{\nu_j}+1 \rang & b_{\nu_j}|n_{\nu_j}\rang=\sqrt{n_{\nu_j}}|n_{\nu_j} -1\rang & b_{\nu_j}|0\rang=0\\
 {b^{\dagger}}_{\nu_j}b_{\nu_j}|n_{\nu_j} \rang=n_{\nu_j}|n_{\nu_j} \rang &\left({b^{\dagger}}_{\nu_j}\right)^{n_{\nu_j}}|0 \rang=\sqrt{(n_{\nu_j})!}|n_{\nu_j} \rang & n_{\nu_j}=0,1,2,\dots\\
\end{matrix}
and therefore identify the first and second quantized states,
 \hat{S}_+|\psi_{n_{\nu_1}}(\bold{r}_1)\rang|\psi_{n_{\nu_2}}(\bold{r}_2)\rang\dots |\psi_{n_{\nu_1}}(\bold{r}_N)\rang= {b^{\dagger}}_{n_{\nu_1}}{b^{\dagger}}_{n_{\nu_2}}\dots{b^{\dagger}}_{n_{\nu_N}}|0\rang
with  \hat{S} the symmetrization operator. Here, both contain N-particle state-kets completely symmetric in the single-particle state index \psi_{\nu_j}. Because the creation and annihilation operators of the quantum harmonic oscillator obey these properties, one can classify the field associated to it as bosonic.

No comments:

Post a Comment